
Tetrahedron Letters No. 49, pp 4897 - 4900, 1973. Pergamon Press. Printed in Great Britain. 

REDUCTIVE REARRANGE~~ENT OF ALLYLIC ACETALS (HEX-~-ENOPYRM~SIDES) 

TO VINYL ETHERS (GLYCALS) BY LAH: GEOMETRY OF THE SUBSTRATE 
1 

AND REACTION SPECIFICITY 

S. Y-K. Tam and Bert Fraser-Reid 
Chemistry Department, University of Waterloo, Waterloo, Ontario, 

Canada 

(Received in USA 26 June 1973; received in UK for publication 22 October 1975) 

A recent report from this laboratory described the reaction in which unsaturated acetals 

are reductively rearranged to vinyl ethers by chloride-free LAH in ethereal solvents '. The 

value of this reaction is evident from its use for stereospecific syntheses of the epimeric 2- 

monodeuterated 2-deoxyriboses ', which were subsequently employed to establish the stereochem- 

istry of nucleotide deoxygenation '. A recent report by Achmatowicz and Szechner a offers a 

valuable extension of our initial observations; however we wish to clarify three aspects of 

their report which imply (a) that syn-relationship of both allylic oxygens is required for 

rearrangement, (b) that C-4 control (via "N") is preferred, and (c) that the rearrangement is - 
stereospecific only when the C 4 hydroxyl group is free. In addition we report herein the 

reductive rearrangement of two "ordinary" allylic alcohols, 20 and 21, in which the oxygen lost 

is not a part of an acetal function. - 

The items (a), (b) and (c) above, fall within the purview of three mechanistic headings: 

Substrate Geometry, Transition State Geometv and Reaction Specificity respectively, and we will 

examine these below. 

Substrate Geometry: Achmatowicz and Szechner report that the z-isomers 5 and 5 are arranged 

to 2 and 10 respectively in ether and LAH at room temperature, whereas &-isomers 1 and S - 
are not rearranged. In our experience* , D-isomer 1 is rearranged readily to 2 in ether, 

but the anti-isomer 2 requires refluxing dioxan as solvent before the rearrangement-proceeds 

at a useful rate. Accordingly we examined the anti-isomers 12, 136 and 14" in refluxing - 
dioxan. All three were rearranged in 30h, 4h and 4h respectively (Chart) thereby indicating 

that 1,4-anti-relationship is not a barrier to the process. The products were readily 

identifiable6 and the difference in rate will be commented upon below. 

Transition-State Geometry: The 

provides a clue to the allylic 

"H" or ,VN,! . For this purpose, 

orientation of deuterium in the products from LAD reactions, 

oxygen (C-l or C-4) exercising control via transition state "L", - 

compounds 1,~ and 5 are unhelpful since both oxYgens are SYTL- 
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related. However, the anti-isomers 3, -. 12, and 13 allow discrete diagnosis, as the results in the - 
Chart indicate. The results from 13 and 14 show that several modes of control are operable in - - 
a given substrate. Thus products 16 and 13 are formed by C-l control via transition state "L" - - 

however products !_7_ and I?_ are both formed by C-4 control, but by different transition states - 

“M” and “N” respectively. 

The operation of transition state _ "L" in the reactions of 1 and 3 also provides a rationa- - - 
lization for the slowness of 3_, since 3 would have to assume a boat conformation for the 

methoxy-allane complex to be optimally poised for delivery of the hydride ion to carbon-3. 

The failure of C-4 control via "N" in 3 (which would have produced some 2) is understandable, since - 
the trans-fused benzylidene ring would not readily accommodate such a transition state. Similar 

reasoning accounts for the sluggishness of 12 as compared with 13 and 14. - - - 

OCH 
20 3 
- 



Reaction Specificity: TInis aspect must be considered with respect to the transition state in- 

volved “L” -I “M” , or “El’ . In equations (i) and (ii), the products (2 and i) indicate that 

the reactions are both stereo- and regio-specific. Similarly in equation (vii), the reactions 

giving 19 and 11 are both stereo-and &-specific for the oxygen exercising control in the -- 
transition state, C-l and C-4 respectively. The dilemma of the epimers 16 and 18 (equation (v - - 
arises because C-4 control of 13 while being stereospecific is not &specific. The data - 
in the chart indicate that allylic hydroxyl groups (generated in situ) show a predilection for -- 
a 5-centre. 

The formation of 17 from 13 implied that an “ordinary” - - allylic alcohol would give the 

rearranged olefin under the reaction conditions. Indeed the “ordinary” allylic alcohols 20 - 
and 21 readily gave the rearranged olefins 226 and 236. - - - As expected these substances were 

further transformed under the reaction conditions to the glycals 246 and 2S6. These results - 
indicate that for 20 and 21 (at least) the 2-phenyl substituent found necessary for comparable - - 
rearrangement of acylic allylic systems is not required!’ Experiments are underway to see what 

other systems may be prone to this reductive rearrangement. 
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